Computational biology - modeling of primary blast effects on the central nervous system.
نویسندگان
چکیده
OBJECTIVES Recent military conflicts in Iraq and Afghanistan have highlighted the wartime effect of traumatic brain injury (TBI). The reason for the prominence of TBI in these particular conflicts as opposed to others is unclear but may result from the increased survivability of blast due to improvements in body armor. In the military context blunt, ballistic and blast effects may all contribute to CNS injury, however blast in particular, has been suggested as a primary cause of military TBI. While blast effects on some biological tissues, such as the lung, are documented in terms of injury thresholds, this is not the case for the CNS. We hypothesized that using bio-fidelic models, allowing for fluid-solid interaction and basic material properties available in the literature, a blast wave would interact with CNS tissue and cause a possible concussive effect. METHODS The modeling approach employed for this investigation consisted of a computational framework suitable for simulating coupled fluid-solid dynamic interactions. The model included a complex finite element mesh of the head and intra-cranial contents. The effects of threshold and 50% lethal blast lung injury were compared with concussive impact injury using the full head model allowing upper and lower bounds of tissue injury to be applied using pulmonary injury as the reference tissue. RESULTS The effects of a 50% lethal dose blast lung injury (LD(50)) were comparable with concussive impact injury using the DVBIC-MIT full head model. INTERPRETATION CNS blast concussive effects were found to be similar between impact mild TBI and the blast field associated with LD(50) lung blast injury sustained without personal protective equipment. With the ubiquitous use of personal protective equipment this suggests that blast concussive effects may more readily ascertained in personnel due to enhanced survivability in the current conflicts.
منابع مشابه
A Case Report of Primary Angiitis of the Central Nervous System
BACKGROUND AND OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is an inflammatory vasculitis with very low frequency and prevalence. It is not clear why the inflammatory process of this disease is limited to cerebrovascular disease without systemic manifestations. A case of primary angiitis of the central nervous system with cerebrovascular manifestations is reported here. C...
متن کاملThe Protective Effects of Nanoparticles in the Treatment of Nervous System Injuries: A Narrative Review
Background and Objectives: Nervous system damage causes many economic costs annually. Although many efforts have been made to treat these injuries, nerves are not yet completely regenerated. Primary damage to the nervous system is followed by a series of events such as inflammation, increased oxidative stress, and the spread of damage. Oxidative stress caused by an imbalance between the product...
متن کاملCross-talks between the kidneys and the central nervous system in multiple sclerosis
Multiple sclerosis (MS) is an inflammatory demyelinating disease, which is considered as a common autoimmune disorder in young adults. A growing number of evidences indicated that the impairment in non-neural tissues plays a significant role in pathology of MS disease. There are bidirectional relationship, metabolic activities and functional similarity between central nervous system (CNS) and k...
متن کاملEffect of Honey Bee Venom on Lewis Rats with Experimental Allergic Encephalomyelitis, a Model for Multiple Sclerosis
Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic...
متن کاملEffect of Honey Bee Venom on Lewis Rats with Experimental Allergic Encephalomyelitis, a Model for Multiple Sclerosis
Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 47 Suppl 2 شماره
صفحات -
تاریخ انتشار 2009